题目内容

如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD=  

考点:

等腰梯形的性质;算术平均数;众数.

分析:

设梯形的四边长为5,5,x,2x,根据平均数求出四边长,求出△BDC是直角三角形,根据勾股定理求出即可.

解答:

解:设梯形的四边长为5,5,x,2x,

=

x=5,

则AB=CD=5,AD=5,BC=10,

∵AB=AD,

∴∠ABD=∠ADB,

∵AD∥BC,

∴∠ADB=∠DBC,

∴∠ABD=∠DBC,

∵∠ABC=60°,

∴∠DBC=30°,

∵等腰梯形ABCD,AB=DC,

∴∠C=∠ABC=60°,

∴∠BDC=90°,

∴在Rt△BDC中,由勾股定理得:BD==5

故答案为:5

点评:

本题考查了梯形性质,平行线性质,勾股定理,三角形内角和定理,等腰三角形的性质等知识点的应用,关键是求出BC、DC长和得出三角形DCB是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网