题目内容

已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3,BC=9
(1)求的值;
(2)若BD=10,求sin∠A的值.

【答案】分析:(1)由平行线可得△ADE∽△ABC,进而由对应边成比例即可得出的值;
(2)根据(1)=得出=,再根据BD=10,DE=3,BC=9,得出AD的值,即可求出AB的值,从而得出sin∠A的值.
解答:解:(1)∵DE∥BC,
∴△ADE∽△ABC,即=
又∵DE=3,BC=9
==

(2)根据(1)=得:=
∵BD=10,DE=3,BC=9,
=
∴AD=5,
∴AB=15,
∴sin∠A===
点评:此题考查了相似三角形的判定与性质,解题的关键是根据相似比得出=,难度不大,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网