题目内容
一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( )
A.4 B.8 C.10 D.12
清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步: =m;第二步: =k;第三步:分别用3、4、5乘以k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
(1)求该店有客房多少间?房客多少人?
(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?
小明在解关于、的二元一次方程组时得到了正确结果,后来发现“?”“ ?”处被墨水污损了,请你帮他找出?、? 处的值分别是( )
A. ? = 1,? = 1; B. ? = 2,? = 1; C. ? = 1,? = 2; D. ? = 2,? = 2.
如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为__.
利用,把下列非负数分别写成一个非负数的平方的形式;
(1)16;(2)7;(3)1.5;(4)
如果,则a的取值范围是( )
A. B. C. D.
已知=1-2a那么a的取值范围是( )
A. a> B. a< C. a≥ D. a≤
已知△ABC的三边长分别是a,b,c,其中a=3,c=5,且关于x的一元二次方程x2-4x+b=0有两个相等的实数根,判断△ABC的形状.