题目内容

如图,正方形ABCD中,E与F分别是AD、BC上一点.在①AE=CF、②BE∥DF、③∠1=∠2中,请选择其中一个条件,证明BE=DF.
(1)你选择的条件是______(只需填写序号)
证明:
(2)在BE=DF的前提下,当E点位于AD什么位置时,EF∥CD?请说明理由.

解法一:(1)选①;
(2)证明:∵ABCD是正方形,
∴AB=CD,∠A=∠C=∠Rt
又∵AE=CF,
∴△AEB≌△CFD,
∴BE=DF.

解法二:(1)选②;
(2)证明:∵ABCD是正方形,
∴AD∥BC
又∵BE∥DF,
∴四边形EBFD是平行四边形,
∴BE=DF.

解法三:(1)选③;)
(2)证明:∵ABCD是正方形,
∴AB=CD,⊙∠A=∠C=∠Rt
又∵∠1=∠2,
∴△AEB≌△CFD.
∴BE=DF.

(2)当E位于AD中点时,EF∥CD,
理由:∵BE=DF,AB=CD,
∴Rt△AEB≌Rt△CFD.
∴AE=CF,又AE=DE,所以DE=CF,
又∵DE∥CF,∴四边形EDCF是平行四边形,所以EF∥CD.
分析:(1)有所选条件加上已知条件看能附证明结论,若选①可通过SAS证明△BAE≌△DCF,所以可证出BE=DF.若选②则可判断四边形EBFD为平行四边形,可证得BE=DF.若选③可判断出△AEB≌△CFD,可证得BE=DF.
(2)EF∥CD可知EF⊥BC,又因为BE=DF,故可判断E在AD的中点处.
点评:本题主要是考查正方形的四边相等的性质证明三角形的全等,也用到了平行四边形的判定即有一组对边相等且平行的四边形为平行四边形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网