题目内容
如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.
(1)若AB=4
,求
的长;(结果保留π)
(2)求证:四边形ABMC是菱形.
![]()
(1)解:∵OA=OB,E为AB的中点,
∴∠AOE=∠BOE,OE⊥AB,
∵OE⊥AB,E为OD中点,
∴OE=
OD=
OA,
∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,
设OA=x,则OE=
x,AE=
x,
∵AB=4
,
∴AB=2AE=
x=4
,
解得:x=4,
则
的长l=
=
;
(2)证明:由(1)得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,
∴∠BAM=∠BMA=30°,
∴AB=BM,
∵BM为圆O的切线,
∴OB⊥BM,
在△COM和△BOM中,
,
∴△COM≌△BOM(SAS),
∴CM=BM,∠CMO=∠BMO=30°,
∴CM=AB,∠CMO=∠MAB,
∴CM∥AB,
∴四边形ABMC为菱形.
![]()
练习册系列答案
相关题目