题目内容

如图,点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE相交于点E,试说明四边形OCED是矩形.
分析:要证明四边形OCED是矩形,由已知知其为平行四边形,又由菱形对角线互相垂直,得出其一个角为直角,即为所求结论.
解答:证明:∵DE∥AC,CE∥BD,
∴DE∥OC,CE∥OD
∴四边形OCED是平行四边形,
又∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°,
∴四边形OCED是矩形.
点评:解决问题的关键是熟练掌握矩形的性质及判定定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网