题目内容
【题目】如图,在矩形ABCD中,AB=2,BC=4,对角线AC与BD交于点O,点E在BC边上,DE与AC交于点F,∠CDE=∠CBD.
![]()
求:(1)CE的长;(2)EF的长.
【答案】(1)CE=1;(2)EF=
.
【解析】
(1)由在矩形ABCD中,∠EDC=∠ADB,易证得△CDE∽△CBD,然后由相似三角形的对应边成比例,求得答案;
(2)首先求得△CDE的面积,然后证得△ADF∽△CEF,即可得:EF:DE=1:5,根据勾股定理得到DE,于是得到结论.
解:(1)∵四边形ABCD是矩形,AB=2,BC=4,
∴AD∥BC,CD=AB=2,
∴∠ADB=∠CBD,
∵∠EDC=∠ADB,
∴∠EDC=∠CBD,
∵∠ECD=∠DCB,
∴△CDE∽△CBD,
∴CE:CD=CD:CB,
∴CE:2=2:4,
解得:CE=1;
(2)∵AD∥BC,
∴△ADF∽△CEF,
∴DF:EF=AD:CE=4:1,
∴EF:DE=1:5,
∵∠DCB=90°,
∴DE=
=
,
∴EF=
.
练习册系列答案
相关题目