题目内容

如图,在△ABC中,∠ACB为直角,AB=10,°,半径为1的动圆Q的圆心从点C出发,沿着CB方向以1个单位长度/秒的速度匀速运动,同时动点P从点B出发,沿着BA方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PB长为半径的⊙P与AB、BC的另一个交点分别为E、D,连结ED、EQ.

(1)判断并证明ED与BC的位置关系,并求当点Q与点D重合时t的值;

(2)当⊙P和AC相交时,设CQ为,⊙P被AC 截得的弦长为,求关于的函数; 并求当⊙Q过点B时⊙P被AC截得的弦长;

(3)若⊙P与⊙Q相交,写出t的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网