题目内容

如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是  .

 

 

56°

 

【解析】

先根据三角形内角和定理求出∠1+∠2的度数,再根据角平分线的定义求出∠ABC+∠ACB的度数,由三角形内角和定理即可得出结论.

【解析】
∵△BOC中,∠BOC=118°,

∴∠1+∠2=180°﹣118°=62°.

∵BO和CO是△ABC的角平分线,

∴∠ABC+∠ACB=2(∠1+∠2)=2×62°=124°,

在△ABC中,

∵∠ABC+∠ACB=124°,

∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣124°=56°.

故答案为:56°.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网