题目内容
已知直线依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.
(1)求设△A1OB1的面积S1;
(2)求S1+S2+S3+…+S6的值.
【答案】分析:(1)因为当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,所以分别令y=0,x=0,即可求出A1和B1的坐标,从而求出△A1OB1的面积S1;
(2)要求S1+S2+S3+…+S6的值,需要找出Sn的规律,因为n=2时,y2=-
,所以分别令y=0,x=0即可求出A2(
,0),同理可求出A2,A3…所以推出当n=n时,yn=
x+
,分别令y=0,x=0,即可求出An(
,0),Bn(0,
),所以Sn=
,整理即可求出答案.
解答:解:(1)∵y1=-2x+1,
∴A1(
,0),B1(0,1),
∴S1=
=
;
(2)∵y2=-
,
∴A2(
,0),B2(0,
)
故S2=
,
∵y3=-
,
∴A3(
,0),B3(0,
),
故S3=
,
…
∵yn=
x+
,
∴An(
),Bn(0,
),
故Sn=
,
∵
=
,
∴S1+S2+…+S6=
(
…
)
=
[(1-
)+(
-
)+…+(
)]=
(1-
)=
.
点评:本题是一道推理性极强的题目,主要考查一次函数的基本的性质及特殊点的坐标,解题的关键是寻找规律.
(2)要求S1+S2+S3+…+S6的值,需要找出Sn的规律,因为n=2时,y2=-
解答:解:(1)∵y1=-2x+1,
∴A1(
∴S1=
(2)∵y2=-
∴A2(
故S2=
∵y3=-
∴A3(
故S3=
…
∵yn=
∴An(
故Sn=
∵
∴S1+S2+…+S6=
=
点评:本题是一道推理性极强的题目,主要考查一次函数的基本的性质及特殊点的坐标,解题的关键是寻找规律.
练习册系列答案
相关题目