题目内容
在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数 。
在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),连结AD,作∠ADE=∠B=α,DE交AC于点E,且cosα=.有下列结论:①△ADE∽△ACD; ②当BD=6时,△ABD与△DCE全等;③当△DCE为直角三角形时,BD=8;④3.6≤AE<10.其中正确的结论是( )
A.①③ B.①④ C.①②④ D.①②③
如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以2cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以3cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发x s时,△PAQ的面积为ycm2,y与x的函数图像如图2 所示,则线段EF所在的直线对应的函数关系式为 .
(9分)【问题引入】
几个人拎着水桶在一个水龙头前面排队打水,水桶有大有小.他们该怎样排队才能使得总的排队时间最短?
假设只有两个人时,设大桶接满水需要T分钟,小桶接满水需要t分钟(显然T>t),若拎着大桶者在拎小桶者之前,则拎大桶者可直接接水,只需等候T分钟,拎小桶者一共等候了(T+t)分钟,两人一共等候了(2T+t)分钟;反之,若拎小桶者在拎大桶者之前,容易求出两人接满水等候(T+2t)分钟。可见,要使总的排队时间最短。拎小桶者应排在拎大桶者前面。这样,我们可以猜测,几个人拎着水桶在一个水龙头前面排队打水,要使总的排队时间最短,需将他们按水桶从小到大排队.
规律总结:
事实上,只要不按照从小到大的顺序排队,就至少有紧挨着的两个人拎大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需t分钟,并设拎大桶者开始接水时已经等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者接满水一共等候了(m+T+t)分钟,两人共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交换位置,即局部调整这两个人的位置,同样可以计算两个人接满水共等候了 __ ___分钟,共节省了 _________分钟,而其他人的等候时间未变。这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者前,都可以这样局部调整,从而使得总等候时间减少。这样经过一系列调整之后,整个队伍都是从小到大排列,就达到最优状态,总的排队时间就最短.
【方法探究】
一般地,对某些涉及多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想方法就叫做局部调整法.
【实践应用1】
如图1,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
解析:(1)先假定N为定点,调整M到合适位置,使BM+MN有最小值(相对的).
容易想到,在AC上作AN′=AN(即作点N关于AD的对称点N′),连接BN′交AD于M,则M点是使BM+MN有相对最小值的点.(如图2,M点确定方法找到)
(2)再考虑点N的位置,使BM+MN最终达到最小值.
可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此时BM+MN的最小值为 .
【实践应用2】
如图,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形内(包括边界)分别任取点P、R,与已知格点Q(每个小正方形的顶点叫做格点)构成三角形,求△PQR的最大面积,并在图2中画出面积最大时的△PQR的图形.
(6分)计算:
已知点A(a,2015)与点A′(-2016,b)是关于原点O的对称点,则的值为( )
A.0 B.1 C.2 D.3
(本题满分10分)我市是世界有机蔬菜基地,数十种蔬菜在国际市场上颇具竞争力.某种有机蔬菜上市时,某经销商按市场价格10元/千克在我市收购了2000千克某种蔬菜存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批蔬菜时每天需要支出各种费用合计340元,而且这种蔬菜在冷库中最多保存110天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润22500元,需将这批蔬菜存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
方程的解是
A.x=0 B.x=0或x=5 C.x=6 D.x=0或x=6
(本题满分8分)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴,B(2,0),tan∠AOB=,过点A的双曲线为,在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的对应线段O'B'.
(1)当点O'与点A重合时,求直线l的解析式:
(2)当点B'落在双曲线上时,求出点P的坐标.