题目内容
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中
.准备在形如Rt
的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形
内种植紫色花草,每种花草的价格如下表:
| 品种 | 红色花草 | 黄色花草 | 紫色花草 |
| 价格(元/米2) | 60 | 80 | 120 |
设
的长为
米,正方形
的面积为
平方米,买花草所需的费用为
元,解答下列问题:
(1)
与
之间的函数关系式为
;
(2)求
与
之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求
的长.
![]()
(1)![]()
(2)![]()
=60
=80![]()
配方,得
![]()
当
时,
元.
(3)设
米,则
.
在Rt
中,
解得![]()
![]()
的长为
米.
解析:略
练习册系列答案
相关题目
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE=MN.准备在形如Rt△MEH的四个全等三角形内种植黄色花草,在形如Rt△AEH的四个全等三角形内种植红色花草,在正方形MNPQ内种植紫色花草,每种花草的价格如下表:
设AE的长为x米,正方形EFGH的面积为S平方米,买花草所需的费用为W元,解答下列问题:
(1)S与x之间的函数关系式为S= ;
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求EM的长.
| 品 种 | 红色花草 | 黄色花草 | 紫色花草 |
| 价格(元/米2) | 60 | 80 | 120 |
(1)S与x之间的函数关系式为S=
(2)求W与x之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求EM的长.
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中
.准备在形如Rt
的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形
内种植紫色花草,每种花草的价格如下表:
设
的长为
米,正方形
的面积为
平方米,买花草所需的费用为
元,解答下列问题:
(1)
与
之间的函数关系式为
;
(2)求
与
之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求
的长.
| 品种 | 红色花草 | 黄色花草 | 紫色花草 |
| 价格(元/米2) | 60 | 80 | 120 |
(1)
(2)求
(3)当买花草所需的费用最低时,求
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中
.准备在形如Rt
的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形
内种植紫色花草,每种花草的价格如下表:
| 品种 | 红色花草 | 黄色花草 | 紫色花草 |
| 价格(元/米2) | 60 | 80 | 120 |
(1)
(2)求
(3)当买花草所需的费用最低时,求
某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中
.准备在形如Rt
的四个全等三角形内种植红色花草,在形如Rt△EMH的四个全等三角形内种植黄色花草,在正方形
内种植紫色花草,每种花草的价格如下表:
|
品种 |
红色花草 |
黄色花草 |
紫色花草 |
|
价格(元/米2) |
60 |
80 |
120 |
设
的长为
米,正方形
的面积为
平方米,买花草所需的费用为
元,解答下列问题:
(1)
与
之间的函数关系式为
;
(2)求
与
之间的函数关系式,并求所需的最低费用是多少元;
(3)当买花草所需的费用最低时,求
的长.
![]()