题目内容
如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,
则∠CDF = 度。
74;
已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.
(1)求抛物线的解析式及顶点D的坐标;
(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出点的坐标;若不存在,说明理由;
(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:
AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.
如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度。
已知,如图,⊿ABC中,∠A =,AB =AC,D是BC边上的中点,E、F分别是AB、AC上的点,且BE = AF,求证:ED⊥FD; (本小题5分)