题目内容

如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为________米.

600
分析:过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.
解答:解:过点C作CO⊥AB,垂足为O,
∵BD=900,
∴OC=900,
∵∠EAC=30°,
∴∠ACO=30°.
在Rt△AOC中,
∵AC=2OA,
设OA=x,则AC=2x,
(2x)2-x2=OC2=9002
∴x2=270000,
∴x=300
∴AC=600米.
故答案为600
点评:本题考查了直角三角形的性质和勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网