题目内容

如图,在四边形ABCD中,E是AB上一点,EC∥AD,DE∥BC,若S△BEC=1,S△ADE=3,则S△CDE等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    2
C
分析:由题意在四边形ABCD中延长AD、BC交于F,则BECF为平行四边形,然后根据相似三角形面积之比等于边长比的平方来求解.
解答:解:延长AD、BC交于F,则DECF为平行四边形,
∵EC∥AD,DE∥BC,
∴∠ADE=∠DEC=∠BCE,∠CBE=∠AED,
∴△CBE∽△DEA,
又∵S△BEC=1,S△ADE=3,
==
∵CEDF为平行四边形,
∴△CDE≌△DCF,
∴S?CEDF=2S△CDE
∵EC∥AD,
∴△BCE∽△BFA,
=,S△BCE:S△BFA=(2,即1:(1+3+2S△CDE)=
解得:S△CDE=
故选C.
点评:解答此题的关键是根据平行于三角形一边的直线截得的三角形与原三角形相似及相似三角形的性质来解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网