题目内容

10.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).
(1)用含t的代数式表示:
AP=t;DP=12-t;BQ=15-2t;CQ=2t.
(2)当t为何值时,四边形APQB是平行四边形?
(3)当t为何值时,四边形PDCQ是平行四边形?

分析 (1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ的长
(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;
(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.

解答 解:(1)t,12-t,15-2t,2t
(2)根据题意有AP=t,CQ=2t,PD=12-t,BQ=15-2t.
∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.
∴t=15-2t,解得t=5.
∴t=5s时四边形APQB是平行四边形;
(3)由AP=tcm,CQ=2tcm,
∵AD=12cm,BC=15cm,
∴PD=AD-AP=12-t,
如图1,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.
即:12-t=2t,
解得t=4s,
∴当t=4s时,四边形PDCQ是平行四边形.

点评 本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网