题目内容
抛物线与轴的交点的坐标是( )
A. ; B. ; C. ; D. .
如图,△ABC与△DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若∠B+∠E=90°,则△ABC与△DEF的面积比为( )
A、9:4 B、3:2 C、: D、3:2
如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
2014年3月,某海域发生航班失联事件,我海事救援部门用高频海洋探测仪进行海上搜救,分别在A、B两个探测点探测到C处是信号发射点,已知A、B两点相距400m,探测线与海平面的夹角分别是和,若CD的长是点C到海平面的最短距离.
问BD与AB有什么数量关系,试说明理由;
求信号发射点的深度结果精确到1m,参考数据:,
将一次函数的图象向下平移3个单位长度,相应的函数表达式为______.
下列计算正确的是
A. B. C. D.
某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;
(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
下列运算,正确的是( )
A. 4a﹣2a=2 B. a6÷a3=a2 C. ()﹣1﹣22=﹣2 D. (a﹣b)2=a2﹣b2
袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.