题目内容

若实数x≠y,且满足(x+1)2+2(x+1)-2=0,y2+4y+1=0.则数学公式=


  1. A.
    2
  2. B.
    4
  3. C.
    ±2
  4. D.
    -2
D
分析:先化简(x+1)2+2(x+1)-2=0,可得x2+4x+1=0,根据题意可知x、y是方程a2+4a+1=0的两根,再化简,根据根与系数的关系即可求解.
解答:化简(x+1)2+2(x+1)-2=0,可得x2+4x+1=0,
∵x≠y,y2+4y+1=0.
∴x<0,y<0,xy=1,
=--=-2=-2.
故选D.
点评:考查了二次根式的化简求值,一元二次方程根与系数的关系,二次根式的性质:=|a|的知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网