题目内容

如图,正三角形ABC内接于⊙O,若AB=数学公式cm,求⊙O的半径.

解:过点O作OD⊥BC于点D,连接BO,
∵正三角形ABC内接于⊙O,
∴点O即是三角形内心也是外心,
∴∠OBD=30°,BD=CD=BC=AB=
∴cos30°===
解得:BO=2,
即⊙O的半径为2cm.
分析:利用等边三角形的性质得出点O既是三角形内心也是外心,进而求出∠OBD=30°,BD=CD,再利用锐角函数关系得出BO即可.
点评:此题主要考查了正多边形和圆,利用正多边形内外心的特殊关系得出∠OBD=30°,BD=CD是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网