题目内容
已知四边形的四个外角度数之比为1∶2∶3∶4,求各内角的度数.
已知关于x的方程mxx=0(m为常数).
(1)求证:方程有两个不相等的实数根;
(2)设,是方程的两个实数根,且+=6.请求出方程的这两个实数根.
如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.
(1)求证:四边形DEFG为菱形;
(2)若CD=8,CF=4,求的值.
如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.
如图,已知△ABC和△DEF是两个边长都为1 cm的等边三角形,且B,D,C,E都在同一直线上,连接AD及CF.
(1)求证:四边形ADFC是平行四边形;
(2)若BD=0.3 cm,△ABC沿着BE的方向以每秒1 cm的速度运动,设△ABC的运动时间为t秒.
①当t为何值时, ADFC是菱形?请说明你的理由;
②ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.
如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=.其中正确结论的序号是( )
A. ①②③④ B. ①②④⑤ C. ②③④⑤ D. ①③④⑤
如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为( )
A.9 B.6 C.3 D.
如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
如果a、b互为相反数,c、d互为倒数,m的绝对值是2,那么-cd的
值是 ▲