ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÏÈÔĶÁÒ»¶ÎÎÄ×Ö£¬ÔٻشðÏÂÁÐÎÊÌ⣺
ÒÑÖªÔÚÆ½ÃæÄÚÁ½µã×ø±êP1(x1£¬y1)£¬P2(x2£¬y2)£¬ÆäÁ½µã¼ä¾àÀ빫ʽΪ
£¬Í¬Ê±£¬µ±Á½µãËùÔÚµÄÖ±ÏßÔÚ×ø±êÖáÉÏ»òƽÐÐÓÚxÖá»ò´¹Ö±ÓÚxÖá¾àÀ빫ʽ¿É¼ò»¯³É|x2-x1|»ò|y2-y1|£®
(1)ÒÑÖªA(3£¬5)£¬B(-2£¬-1)£¬ÊÔÇóA£¬BÁ½µãµÄ¾àÀ룻
(2)ÒÑÖªA¡¢BÔÚÆ½ÐÐÓÚyÖáµÄÖ±ÏßÉÏ£¬µãAµÄ×Ý×ø±êΪ5£¬µãBµÄ×Ý×ø±êΪ-1£¬ÊÔÇóA£¬BÁ½µãµÄ¾àÀ룮
(3)ÒÑÖªÒ»¸öÈý½ÇÐθ÷¶¥µã×ø±êΪA(0£¬6)£¬B(-3£¬2)£¬C(3£¬2)£¬ÄãÄܶ϶¨´ËÈý½ÇÐεÄÐÎ×´Âð?˵Ã÷ÀíÓÉ¡£
¡¾´ð°¸¡¿£¨1£©
£»£¨2£©6£»£¨3£©¡÷ABCΪµÈÑüÈý½ÇÐΣ¬ÀíÓɼû½âÎö
¡¾½âÎö¡¿
£¨1£©¸ù¾ÝµãA¡¢BµÄ×ø±êÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öA£¬BÁ½µã¼äµÄ¾àÀ룻
£¨2£©ÉèµãAµÄ×ø±êΪ£¨m£¬5£©£¬ÔòµãBµÄ×ø±êΪ£¨m£¬-1£©£¬¸ù¾ÝµãA¡¢BµÄ×ø±êÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öA£¬BÁ½µã¼äµÄ¾àÀ룻
£¨3£©¸ù¾ÝµãA¡¢B¡¢CÈýµãµÄ×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉÇó³öÏß¶ÎAB¡¢AC¡¢BCµÄ³¤¶È£¬ÓÉAB=AC¼´¿ÉµÃÖª¡÷ABCΪµÈÑüÈý½ÇÐΣ®
£¨1£©¡ßA£¨3£¬5£©¡¢B£¨-2£¬-1£©£¬
¡àAB=
£®
¹Ê´ð°¸Îª£º
£®
£¨2£©ÉèµãAµÄ×ø±êΪ£¨m£¬5£©£¬ÔòµãBµÄ×ø±êΪ£¨m£¬-1£©£¬
¡àAB=
=6£®
¹Ê´ð°¸Îª£º6£®
£¨3£©¡÷ABCΪµÈÑüÈý½ÇÐΣ¬ÀíÓÉÈçÏ£º
¡ßA£¨0£¬6£©£¬B£¨-3£¬2£©£¬C£¨3£¬2£©£¬
¡àAB=![]()
¡àAB=AC£¬
¡à¡÷ABCΪµÈÑüÈý½ÇÐΣ®