题目内容
已知:如图,扇形OAB和扇形OA′B′的圆心角相同,设AA′=BB′=d.
=l1,
=l2.
求证:图中阴影部分的面积S=
(l1+l2)d.

| AB |
| A′B′ |
求证:图中阴影部分的面积S=
| 1 |
| 2 |
证明:设∠AOB=n°,OA′=OB′=r,
∵
=l1,
=l2.
∴l1=
,l2=
,
∴
=
,
∴r=
①,
∵S阴影=S扇形OAB-S扇形OA′B′=
l1(r+d)-
l2r=
(l1r+l1d-l2r)
=
[(l1-l2)r+l1d]
=
[(l1-l2)×
+l1d]
=
(l2d+l1d)
=
(l1+l2)d.
∵
| AB |
| A′B′ |
∴l1=
| nπ(r+d) |
| 180 |
| nπr |
| 180 |
∴
| l1 |
| l2 |
| r+d |
| r |
∴r=
| l2d |
| l1-l2 |
∵S阴影=S扇形OAB-S扇形OA′B′=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
| l2d |
| l1-l2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
练习册系列答案
相关题目