题目内容
方程2x-3=3与方程1-| 3a-x | 3 |
分析:可以分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.
解答:解:解方程2x-3=3得x=3,
解方程1-
=0得x=3a-3,
由题意得:3a-3=3,
解得:a=2.
故填:2.
解方程1-
| 3a-x |
| 3 |
由题意得:3a-3=3,
解得:a=2.
故填:2.
点评:本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.
练习册系列答案
相关题目
探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
| 方 程 | x1 | x2 | x1+x2 | x1•x2 |
| (1) | ||||
| (2) | ||||
| (3) |
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
| 方 程 | x1 | x2 | x1+x2 | x1.x2 |
| (1) | ______ | ______ | ______ | ______ |
| (2) | ______ | ______ | ______ | ______ |
| (3) | ______ | ______ | ______ | ______ |
一般的,对于关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根为x1、x2
则x1+x2=______,x1.x2=______.
(2)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,利用上述结论,不解方程,求x12+x22的值.
探究发现:
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
(1)请用文字语言概括你的发现.
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.
解下列方程,将得到的解填入下面的表格中,观察表格中两个解的和与积,它们和原来的方程的系数有什么联系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
| 方 程 | x1 | x2 | x1+x2 | x1•x2 |
| (1) | ||||
| (2) | ||||
| (3) |
(2)一般的,对于关于x的方程x2+px+q=0的两根为x1、x2,则x1+x2=______,x1•x2______.
(3)运用以上发现,解决下面的问题:
①已知一元二次方程x2-2x-7=0的两个根为x1,x2,则x1+x2的值为______
A.-2 B.2 C.-7 D.7
②已知x1,x2是方程x2-x-3=0的两根,试求(1+x1)(1+x2)和x12+x22的值.