题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=
.
(1)求抛物线的解析式;
(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;
![]()
【答案】(1)y=﹣
x2﹣
x+3;(2)![]()
【解析】(1)由点C的坐标以及tan∠OAC=
.可得出点A的坐标,结合点A、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设直线AC的解析式为y=kx+b,由点A、C的解析式利用待定系数法即可求出直线AC的解析式,设N(x,0)(-4<x<0),可找出H、P的坐标,由此即可得出PH关于x的解析式,利用配方法即二次函数的性质即可求出最值.
解:(1)∵C(0,3),
∴OC=3,
∵tan∠OAC=
,
∴OA=4,
∴A(﹣4,0).
把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,
得
,
解得:
,
∴抛物线的解析式为y=﹣
x2﹣
x+3.
(2)设直线AC的解析式为y=kx+b,
把A(﹣4,0)、C(0,3)代入y=kx+b中,
得:
,
解得:
,
∴直线AC的解析式为y=
x+3.
设N(x,0)(﹣4<x<0),
则H(x,
x+3),P(x,﹣
x2﹣
x+3),
∴PH=﹣
x2﹣
x+3﹣(
x+3)=﹣
x2﹣
x=﹣
(x+2)2+
,
∵﹣
<0,
∴PH有最大值,
即当x=﹣2时,PH取最大值,最大值为
.
练习册系列答案
相关题目