题目内容
| A、2 | B、3 | C、4 | D、5 |
分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:①由抛物线的开口方向向上可推出a>0;
因为对称轴在y轴右侧,对称轴为x=-
>0,
又因为a>0,b<0;
由抛物线与y轴的交点在y轴的负半轴上,
∴c<0,故abc>0;
②由抛物线与x轴有两个交点可以推出b2-4ac>0.
③由图象可知:对称轴x=-
>0且对称轴x=-
<1,
∴2a+b>0,
④由图象可知:当x=1时y<0,
∴a+b+c<0.
⑤欲求方程ax2+bx+c=-2的解,也就是函数y=ax2+bx+c中y=-2时,x的值,
由图象可知,y=-2时x=0.
∴②、③、④、⑤正确.
故选C.
因为对称轴在y轴右侧,对称轴为x=-
| b |
| 2a |
又因为a>0,b<0;
由抛物线与y轴的交点在y轴的负半轴上,
∴c<0,故abc>0;
②由抛物线与x轴有两个交点可以推出b2-4ac>0.
③由图象可知:对称轴x=-
| b |
| 2a |
| b |
| 2a |
∴2a+b>0,
④由图象可知:当x=1时y<0,
∴a+b+c<0.
⑤欲求方程ax2+bx+c=-2的解,也就是函数y=ax2+bx+c中y=-2时,x的值,
由图象可知,y=-2时x=0.
∴②、③、④、⑤正确.
故选C.
点评:考查二次函数y=ax2+bx+c系数符号的确定.
练习册系列答案
相关题目