题目内容
平面直角坐标系中,下列各点中,在y轴上的点是 ( )
A. ( 2,0 ) B. ( -2,3 ) C. ( 0,3 ) D. ( 1,-3 )
一个多边形的外角和是内角和的,则这个多边形的边数为_____.
下列一元二次方程中,有实数根的方程是( )
A. x2﹣x+1=0 B. x2﹣2x+3=0 C. x2+x﹣1=0 D. x2+4=0
圆心坐标为(﹣1,0)的圆与x轴相交于A,B两点,已知A(,0),则点B的坐标为________.
一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5 km处,乙车位于雕像北方7 km处.若甲、乙两车以相同的速度向雕像方向同时驶去,当甲车到雕像西方1 km处时,乙车在( )
A. 雕像北方1 km处 B. 雕像北方3 km处 C. 雕像南方1 km处 D. 雕像北方3 km处
如图,在□ABCD 中,∠ADB=90°,点 E 为 AB 边的中点,点 F 为CD 边的中点.
(1)求证:四边形 DEBF 是菱形;
(2)当∠A 等于多少度时,四边形 DEBF 是正方形?并说明你的理由.
如图,二次函数的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程有两个相等的实数根,其中正确的结论是______.(只填序号即可).
如图所示,EF⊥BD,垂足为E,∠1=50°,∠2=40°,试判断AB与CD是否平行,并说明理由.
如图,在平面直角坐标系中,已知点A(-5,0),B(5,0),
(1)写出C点的坐标;
(2)动点P从B点出发以每秒1个单位的速度沿BA方向运动,同时动点Q从C点出发也以每秒1个单位的速度沿y轴正半轴方向运动(当P点运动到A点时,两点都停止运动).设从出发起运动了x秒.
①请用含x的代数式分别表示P,Q两点的坐标;
②当x=2时,y轴上是否存在一点E,使得△AQE的面积与△APQ的面积相等?若存在,求E的坐标,若不存在,说明理由?
(3)在点P、Q运动过程中,过点Q作x轴的平行线DE,∠DQP与∠APQ的角平分线交于点M,则∠PMQ的大小会随点P、Q的运动而变化吗?如果不变化,请求出∠PMQ的度数;若发生变化,请说明理由。