题目内容
(2001•山东)如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC于G.(1)说明点G是线段BC的一个三等分点;
(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).
【答案】分析:(1)根据矩形对角线的性质可以判断E为BC的二等分点,再由OE∥CD,OE=
CD,得出EG=
GC,从而得出GC=
CE=
BC.
(2)依题意,根据平行线分线段成比例定理直接在图中作图即可.
解答:
解:(1)∵OE⊥BC,FG⊥BC,
∴OE∥CD.
∴
.
∵四边形ABCD是矩形,
∴AD∥BC.
∴
.
∴G是BC的三等分点;
(2)依题意画图如右.
点评:本题考查平行线分线段成比例定理,需要根据平行找准对应关系,要和相似三角形对应边成比例加以区别.
(2)依题意,根据平行线分线段成比例定理直接在图中作图即可.
解答:
∴OE∥CD.
∴
∵四边形ABCD是矩形,
∴AD∥BC.
∴
∴G是BC的三等分点;
(2)依题意画图如右.
点评:本题考查平行线分线段成比例定理,需要根据平行找准对应关系,要和相似三角形对应边成比例加以区别.
练习册系列答案
相关题目