题目内容

在矩形ABCD中,已知E是BC的中点,∠BAE=30°,AE=2,则AC=(  )
A、3
B、2
3
C、
7
D、
6
分析:应先利用相应的三角函数求得AB,BC长,进而可利用勾股定理求得AC长.
解答:解:在直角△ABE中,∠BAE=30°.
∴BE=
1
2
AE=1,AB=AE•cos∠BEA=
3

∴BC=2BE=2.
在直角△ABC中利用勾股定理得到:AC=
AB2+BC2
=
7

故选C.
点评:本题主要运用了三角函数,直角三角形有一个锐角是30°,30°的锐角所对的直角边等于斜边的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网