题目内容
某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:| 原料 含量 产品 |
A(单位:千克) | B(单位:千克) |
| 甲 | 9 | 3 |
| 乙 | 4 | 10 |
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.
分析:(1)关键描述语:用A、B两种原料各360千克、290千克,即所用的A、B两种原料应不大于360千克和290千克,再根据生产两种产品所需各原料的量,列出不等式组即可.
(2)成本总额=甲种产品单价×数量+乙种产品单价×数量,列出关系式进行分析.
(2)成本总额=甲种产品单价×数量+乙种产品单价×数量,列出关系式进行分析.
解答:解:(1)依题意列不等式组得
,
由不等式①得x≤32;
由不等式②得x≥30;
∴x的取值范围为30≤x≤32.
(2)y=70x+90(50-x),
化简得y=-20x+4500,
∵-20<0,
∴y随x的增大而减小.
而30≤x≤32,
∴当x=32,50-x=18时,y最小值=-20×32+4500=3860(元).
答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元.
|
由不等式①得x≤32;
由不等式②得x≥30;
∴x的取值范围为30≤x≤32.
(2)y=70x+90(50-x),
化简得y=-20x+4500,
∵-20<0,
∴y随x的增大而减小.
而30≤x≤32,
∴当x=32,50-x=18时,y最小值=-20×32+4500=3860(元).
答:当甲种产品生产32件,乙种18件时,甲、乙两种产品的成本总额最少,最少的成本总额为3860元.
点评:(1)根据原题中已知A、B两种原料的克数即可列出不等式组,求出其公共解集;
(2)根据“成本总额=甲种产品单价×数量+乙种产品单价×数量”列出关系式,根据(1)中所求x的取值范围求出y的最小值即可.
(2)根据“成本总额=甲种产品单价×数量+乙种产品单价×数量”列出关系式,根据(1)中所求x的取值范围求出y的最小值即可.
练习册系列答案
相关题目
某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
| A(单位:千克) | B(单位:千克) | |
| 甲 | 9 | 3 |
| 乙 | 4 | 10 |
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.
某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
|
|
A(单位:千克) |
B(单位:千克) |
|
甲 |
9 |
3 |
|
乙 |
4 |
10 |
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.
某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
| 原料 含量 产品 | A(单位:千克) | B(单位:千克) |
| 甲 | 9 | 3 |
| 乙 | 4 | 10 |
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,写出成本总额y(元)与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求出最少的成本总额.