题目内容

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90º.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为     ,数量关系为     
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)
(3)若AC=,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.

(1)①CF与BD位置关系是 垂 直、数量关系是相 等
②当点D在BC的延长线上时①的结论仍成立.
由正方形ADEF得  AD="AF" ,∠DAF=90º.
∵∠BAC=90º,∴∠DAF="∠BAC" ,  ∴∠DAB=∠FAC,
又AB="AC" ,∴△DAB≌△FAC , ∴CF=BD      
∠ACF=∠ABD.
∵∠BAC=90º, AB="AC" ,∴∠ABC=45º,∴∠ACF=45º,
∴∠BCF="∠ACB+∠ACF=" 90º.即 CF⊥BD
(2)画图正确       
当∠BCA=45º时,CF⊥BD(如图丁).

理由是:过点A作AG⊥AC交BC于点G,∴AC=AG
可证:△GAD≌△CAF   ∴∠ACF=∠AGD=45º 
∠BCF="∠ACB+∠ACF=" 90º.  即CF⊥BD
(3)当具备∠BCA=45º时,
过点A作AQ⊥BC交BC的延长线于点Q,(如图戊)

∵DE与CF交于点P时, ∴此时点D位于线段CQ上,
∵∠BCA=45º,可求出AQ= CQ=4.设CD="x" ,∴  DQ=4—x,
容易说明△AQD∽△DCP,∴ ,  ∴

∵0<x≤3   ∴当x=2时,CP有最大值1.    

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网