题目内容
已知函数y=f(x)=
,则f(1)+f(2)+…+f(511)=
| 1 | |||||||||
|
7
7
.分析:把原函数关系中的无理式变形得到y=
,然后把分子分母都乘以
-
使分母成为立方差公式,这样分母化为1,得到f(x)=
-
,再把x=1,2,…,511分别代入后求和可得到f(1)+f(2)+…+f(511)=
-
+
-
+…+
-
=
-
,然后求出512与1的立方根,即可得到答案.
| 1 | ||||||||||||
(
|
| 3 | x+1 |
| 3 | x |
| 3 | x+1 |
| 3 | x |
| 3 | 2 |
| 3 | 1 |
| 3 | 3 |
| 3 | 2 |
| 3 | 512 |
| 3 | 511 |
| 3 | 512 |
| 3 | 1 |
解答:解:∵y=f(x)=
=
=
=
=
-
,
∴f(1)=
-
,
f(2)=
-
,
…
f(511)=
-
,
∴f(1)+f(2)+…+f(511)=
-
+
-
+…+
-
=
-
=8-1=7.
故答案为7.
| 1 | |||||||||
|
=
| 1 | ||||||||||||
(
|
=
| ||||||
(
|
=
| ||||||
| x+1-x |
=
| 3 | x+1 |
| 3 | x |
∴f(1)=
| 3 | 2 |
| 3 | 1 |
f(2)=
| 3 | 3 |
| 3 | 2 |
…
f(511)=
| 3 | 512 |
| 3 | 511 |
∴f(1)+f(2)+…+f(511)=
| 3 | 2 |
| 3 | 1 |
| 3 | 3 |
| 3 | 2 |
| 3 | 512 |
| 3 | 511 |
| 3 | 512 |
| 3 | 1 |
故答案为7.
点评:本题考查了立方差公式:(a-b)(a2+ab+b2)=a3-b3.也考查了无理式的变形能力.
练习册系列答案
相关题目