题目内容
甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图象如图所示
;乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式为
.
(1)在图中画出乙慢跑所行的路程关于时间的函数图象;
(2)乙慢跑的速度是每分钟______千米;
(3)甲修车后行驶的速度是每分钟______千米;
(4)甲、乙两人在出发后,中途______分钟时相遇.
解:(1)所画图形如下所示:

(2)乙慢跑的速度即是乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式的斜率,
即为
千米/分钟;
(3)甲修车后行驶20min,所形路程为3km,
故甲修车后行驶的速度为:3÷20=
km/min;
(4)由甲行驶的路程s(千米)关于时间t(分钟)的函数图象与乙慢跑所行的路程s(千米)关于时间t(分钟)的函数图象可知:
在距离A地2km处甲乙相遇,此时乙行驶了2×12=24分钟,
即甲、乙两人在出发后,中途24分钟时相遇.
故答案为:
;
;24.
分析:(1)根据所给解析式可知函数过原点,并过点(60,5),由这两点即可得出答案.
(2)乙慢跑的速度即是乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式的斜率;
(3)甲修车后行驶路程是3km,所用时间是20min,即可求出速度;
(4)甲乙相遇,体现在(1)中的图形即是它们的交点,即求出交点得出答案.
点评:本题考查了一次函数的实际应用,难度不大,读懂题意是关键,同时注意与图形结合解答问题.
(2)乙慢跑的速度即是乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式的斜率,
即为
(3)甲修车后行驶20min,所形路程为3km,
故甲修车后行驶的速度为:3÷20=
(4)由甲行驶的路程s(千米)关于时间t(分钟)的函数图象与乙慢跑所行的路程s(千米)关于时间t(分钟)的函数图象可知:
在距离A地2km处甲乙相遇,此时乙行驶了2×12=24分钟,
即甲、乙两人在出发后,中途24分钟时相遇.
故答案为:
分析:(1)根据所给解析式可知函数过原点,并过点(60,5),由这两点即可得出答案.
(2)乙慢跑的速度即是乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式的斜率;
(3)甲修车后行驶路程是3km,所用时间是20min,即可求出速度;
(4)甲乙相遇,体现在(1)中的图形即是它们的交点,即求出交点得出答案.
点评:本题考查了一次函数的实际应用,难度不大,读懂题意是关键,同时注意与图形结合解答问题.
练习册系列答案
相关题目
甲、乙两人同时从A地出发沿同一条路线去B地,若甲一半的时间以a千米/小时的速度行走,另一半的时间以b千米/小时的速度行走;而乙一半的路程以a千米/小时的速度行走,另一半的路程以b千米/小时的速度行走(a,b均大于0且a≠b),则( )
| A、甲先到达B地 | B、乙先到达B地 | C、甲乙同时到达B地 | D、不确定 |