题目内容
在同一平面内,两条直线可能的位置关系是( )
A. 平行 B. 相交 C. 平行或相交 D. 平行、相交或重合
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片沿对角线剪开,得到和.并且量得,.
操作发现:
(1)将图1中的以点为旋转中心,按逆时针方向旋转,使,得到如图2所示的,过点作的平行线,与的延长线交于点,则四边形的形状是________.
(2)创新小组将图1中的以点为旋转中心,按逆时针方向旋转,使、、三点在同一条直线上,得到如图3所示的,连接,取的中点,连接并延长至点,使,连接、,得到四边形,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将沿着方向平移,使点与点重合,此时点平移至点,与相交于点,如图4所示,连接,试求的值.
如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是( )
A. (﹣1,﹣2) B. (﹣1,2) C. (1,﹣2) D. (﹣2,﹣1)
大于小于的所有整数的和是________.
实数,-2,-3的大小关系是( )
A. <-3<-2 B. -3<<-2
C. -2<<-3 D. -3<-2<
已知关于x的方程与=3x﹣2的解互为相反数,求m的值.
已知线段AB=12,在直线AB上取一点P,恰好使AP=AB,点Q为线段PB的中点,则AQ的长为_____.
已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.
(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.
如图,在中,,,以直角顶点为旋转中心,将旋转到的位置,其中、分别是、的对应点,且点在斜边上,直角边交于,则旋转角等于( ).
A. B. C. D.