题目内容
用适当的方法解下列方程.
(1);
(2).
用公式法解下列方程:
(1)x2+2x﹣1=0
(2)16x2+8x=3.
在同一时刻,两根长度不等的柑子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是( )
A. 两根都垂直于地面 B. 两根平行斜插在地上 C. 两根竿子不平行 D. 一根到在地上
某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.
(1)求A、B两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?
如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.
在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是( )
A. B. C. D.
把方程中的小数化为整数得_______________.
若,,则=__________.