题目内容
(本题满分10分)
(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求
的度数.
(2)如图②,在Rt△ABD中,
,
,点M,N是BD边上的任意两点,且
,将△ABM绕点A逆时针旋转
至△ADH位置,连接
,试判断MN,ND,DH之间的数量关系,并说明理由.
(3)在图①中,连接BD分别交AE,AF于点M,N,若
,
,
,求AG,MN的长.

(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求
(2)如图②,在Rt△ABD中,
(3)在图①中,连接BD分别交AE,AF于点M,N,若
(1)在Rt△ABE和Rt△AGE中,
,
,
∴△ABE≌△AGE. ∴
.················································· 1分
同理,
.
∴
.······································································ 2分
(2)
.······································································ 3分
∵
,
,
∴
. ∴
.
又∵
,
,
∴△AMN≌△AHN. ∴
.························································· 5分
∵
,
,
∴
. ∴
.
∴
. ∴
.···································· 6分
(3)由(1)知,
,
.
设
,则
,
.
∵
,
∴
.
解这个方程,得
,
(舍去负根).
∴
.························································································· 8分
∴
.
在(2)中,
,
,
∴
.·········································································· 9分
设
,则
.
∴
.即
.···································································· 10分
∴△ABE≌△AGE. ∴
同理,
∴
(2)
∵
∴
又∵
∴△AMN≌△AHN. ∴
∵
∴
∴
(3)由(1)知,
设
∵
∴
解这个方程,得
∴
∴
在(2)中,
∴
设
∴
略
练习册系列答案
相关题目