题目内容
若x1,x2,x3,x4,x5为互不相等的正奇数,满足(2005-x1)(2005-x2)(2005-x3)(2005-x4)(2005-x5)=242,则x12+x22+x32+x42+x52的未位数字是( )
| A.1 | B.3 | C.5 | D.7 |
(2005-x1)(2005-x2)(2005-x3)(2005-x4)(2005-x5)=242,
而242=2×(-2)×4×6×(-6),
(2005-x1)2+(2005-x2)2+…(2005-x5)2
=22+(-2)2+42+62+(-6)2
=96,
即5×20052+2005×2×(x1+x2+x3+x4+x5)+(x12+x22+x32+x42+x52)的末位数为96,
由上式可知:5×20052的末位数为5,2005×2×(x1+x2+x3+x4+x5)的末位数为0,
而96的末位数为6,
所以6-5=1,即x12+x22+x32+x42+x52的末位数为1.
故选A.
而242=2×(-2)×4×6×(-6),
(2005-x1)2+(2005-x2)2+…(2005-x5)2
=22+(-2)2+42+62+(-6)2
=96,
即5×20052+2005×2×(x1+x2+x3+x4+x5)+(x12+x22+x32+x42+x52)的末位数为96,
由上式可知:5×20052的末位数为5,2005×2×(x1+x2+x3+x4+x5)的末位数为0,
而96的末位数为6,
所以6-5=1,即x12+x22+x32+x42+x52的末位数为1.
故选A.
练习册系列答案
相关题目