题目内容
已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是( )
A.x1=1,x2=﹣1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
【答案】
B.
【解析】
试题分析:关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.
∵二次函数的解析式是y=x2﹣3x+m(m为常数),
∴该抛物线的对称轴是:x=
.
又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),
∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),
∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.
故选B.
考点: 抛物线与x轴的交点.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |