题目内容
【题目】如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 . ![]()
【答案】![]()
【解析】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.
此时△PBC是等腰三角形,线段PD最短,
∵四边形ABCD是菱形,∠ABC=60°,
∴AB=BC=CD=AD,∠ABC=∠ADC=60°,
∴△ABC,△ADC是等边三角形,
∴BO=DO=
×2=
,
∴BD=2BO=2
,
∴PD最小值=BD﹣BP=2
﹣2.
故答案为2
﹣2.![]()
如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,求出BD即可解决问题.本题考查菱形的性质、等边三角形的性质等知识,解题的关键是找到点P的位置,属于中考常考题型.
练习册系列答案
相关题目