题目内容

如图,A是半圆上的一个二等分点,B是半圆上的一个六等分点,P是直径MN上的一个动点,⊙O半径为2,则PA+PB的最小值是______.
作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.作OQ⊥AB,
∵点A与A′关于MN对称,点A是半圆上的一个二等分点,
∴∠A′ON=∠AON=90°,PA=PA′,
∵B是半圆上的一个六等分点,
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=120°,
又∵OA=OA′=2,∠A′=30°,
∴A′Q=OA′cos30°=
3

∴A′B=2
3

∴PA+PB=PA′+PB=A′B=2
3

故答案为:2
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网