题目内容
【题目】如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.
![]()
(1)求证:四边形OCED为平行四边形;
(2)求证:△PCE≌△EDQ
(3)如图2,延长PC,QD交于点R.若∠MON=150°,求证:△ABR为等边三角形。
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析
【解析】
(1)利用两边平行且相等证明即可
(2)根据等腰直角三角形的性质、平行四边形的性质得到∠PCE=∠EDQ,根据边角边公理证明即可;
(3)连结RO,根据线段垂直平分线的判定定理和性质定理得到AR=OR=BR,根据等边三角形的判定定理证明即可.
(1)∵C是AO中点,E是AB中点
∴CE平行且等于
AB
∵OD=
AB,
∴CE平行且等于OD,
∴四边形OCED为平行四边形
(2)证明:∵△OAP是等腰直角三角形,且点C是OA的中点,
∴△PCA和△PCO都是等腰直角三角形,
∴PC=AC=OC,∠PCO=90°
同理:QD=OD=BD,∠QDO=90°
∵四边形CODE是平行四边形
∴CE=OD,ED=OC,
∴ED=PC,QD=CE
∵CE∥ON.DE∥OM,
∴∠ACE=∠AOD,∠BDE=∠AOD
∴∠ACE=∠BDE
∴∠OCE=∠ODE,
∴∠OCE+∠PCO=∠ODE+∠QDO
即∠PCE=∠EDQ
在△PCE与△EDQ中
∴△PCE≌△EDQ;
(3)连结RO,
![]()
∵△OAP和△OBQ均为等腰直角三角形,点C.D分别是OA、OB的中点
∴PR与QR分别是OA,OB的垂直平分线
∴AR=OR=BR
∴∠ARC=∠ORC,∠ORD=∠BRD
∵∠RCO=∠RDO=90°,∠COD=150°
∴∠CRD=30°
∴.∠ARB=60°
∴△ARB是等边三角形。