题目内容
两个长为2,宽为1的矩形ABCD和矩形EFGH如图1所示摆放在直线l上,DE=2,将矩形ABCD绕点D顺时针旋转α角(0°<α<90°),将矩形EFGH绕点E逆时针旋转相同的角度.在旋转的过程中,利用图2思考:当矩形ABCD和矩形EFGH重合部分为正方形时,α=________°.

45
分析:由四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度.得到NF=NC,∠FNC=90°,则∠DNE=90°,ND=NE,得到∠NDE=∠NED=45°,所以∠1=180°-90°-45°=45°,即α=45°.
解答:∵四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度,
∴NF=NC,∠FNC=90°,
∴∠DNE=90°,ND=NE,
∴∠NDE=∠NED=45°,
∴∠1=180°-90°-45°=45°,
∴α=45°.
故答案是:45.
点评:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形和等腰三角形的性质.
分析:由四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度.得到NF=NC,∠FNC=90°,则∠DNE=90°,ND=NE,得到∠NDE=∠NED=45°,所以∠1=180°-90°-45°=45°,即α=45°.
解答:∵四边形MFNC为正方形,而矩形ABCD绕点D顺时针旋转和矩形EFGH绕点E逆时针旋转相同的角度,
∴NF=NC,∠FNC=90°,
∴∠DNE=90°,ND=NE,
∴∠NDE=∠NED=45°,
∴∠1=180°-90°-45°=45°,
∴α=45°.
故答案是:45.
点评:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形和等腰三角形的性质.
练习册系列答案
相关题目