题目内容

精英家教网已知△ABC中,∠C=90°,AC=
11
,BC=5,以c为圆心,BC为半径作圆交BA的延长线于D,则AD的长为(  )
A、
3
7
B、
5
7
C、
7
3
D、
5
3
分析:如图,延长AC与圆相交于E、F,根据已知条件得AF=5+
11
,AE=5-
11
,然后利用相交弦定理即可求出AD的长度.
解答:精英家教网解:延长AC与圆相交于E、F,
则AF=5-
11

AE=5+
11

又AB=6,由相交弦定理AD•AB=AE•AF得
AD=
AE•AF
AB

=
(5-
11
)(5+
11)
6

=
7
3

故选C.
点评:本题主要考查的是相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网