题目内容
【题目】已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;
![]()
(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;
(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).
【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.
【解析】
(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=
BC,GH∥BC,GH=
BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;
(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=
S△AEF=S△APF,即可得出结果.
(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,
∴EG∥AP,EF∥BC,EF=
BC,GH∥BC,GH=
BC,
∴EF∥GH,EF=GH,
∴四边形EGHF是平行四边形,
∵AB=AC,
∴AD⊥BC,
∴EF⊥AP,
∵EG∥AP,
∴EF⊥EG,
∴平行四边形EGHF是矩形;
(2)∵PE是△APB的中线,
∴△APE与△BPE的底AE=BE,又等高,
∴S△APE=S△BPE,
∵AP是△AEF的中线,
∴△APE与△APF的底EP=FP,又等高,
∴S△APE=S△APF,
∴S△APF=S△BPE,
∵PF是△APC的中线,
∴△APF与△CPF的底AF=CF,又等高,
∴S△APF=S△CPF,
∴S△CPF=S△BPE,
∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,
∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC底边BC上高的一半,
∴△PGH底边GH上的高等于△AEF底边EF上高的一半,
∵GH=EF,
∴S△PGH=
S△AEF=S△APF,
综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.