题目内容
计算题:
(1)[-0.52+(-
)2-|-22-4|+(2
)2×
]÷(0.1)2
(2)1
-2
+3
-4
+…+(2k-1)
-2k
+…-2010
(3)
.
解:(1)[-0.52+(-
)2-|-22-4|+(2
)2×
]÷(0.1)2,
=(-
+
-|-8|+
×
)÷
,
=(-8+3)×100,
=-500;
(2)1
-2
+3
-4
+…+(2k-1)
-2k
+…-2010
,
=1+(1-
)-(3-
)+3+(
-
)-(5-
)+…+(2k-1)+(
-
)-[2k+1-
]+…-(2010+1-
),
=1+
-3+
-
+3+
-
-5+
-
+…+(2k-1)+
-
-(2k+1)+
-
]+…-2011+
-
,
=(1-3+3-5+5-…-2009+2009-2011)+(1-
+
-
+
-
+
-
+…+
-
+
-
+…+
-
),
=-2010+(1-
),
=-2009-
,
=-2009
;
(3)
+
+…+
-
(
+
+…+
),
=
(1+
+
+
+…+
+1)-
×
(1+
+
+
+…+
+1),
=
(1+
+
+
+…+
+1-1-
-
-
-…-
-1),
=
(
+
),
=
×
,
=
.
分析:(1)根据有理数的混合运算,先算乘方,然后去掉绝对值号根据运算顺序,把括号里面的计算,最后再根据除以一个数等于乘以这个数的倒数进行计算即可得解;
(2)先把带分数分离成整数与分数的形式,同时把第偶数个改写成分子是1的分数,再把分数写出两个分数的差的形式,进行计算即可得解;
(3)把前2010个分数看作被减数,后面括号里面的数看作减数,根据被减数中每一个分数的分母中两个数的和都相等,减数中每一个分数的分母中的两个数的和也都相等,可以把每一个分数写成两个分数的和的形式,
=
=
(1+
),
=
=
(
+
),…,
=
=
(
+1),同理
=
=
(1+
),
=
=
(
+
),…
=
=
(
+1),然后根据有理数的混合运算法则以及乘法分配律进行计算即可得解.
点评:本题考查了有理数的混合运算,(2)把带分数写成整数与分数的和的形式,并把分数再写出两个分数的差的形式是解题的关键,(3)根据分数的分母上的两个数的和相等,拆分成两个分数的和的形式是解题的关键,本题难度较大,规律性较强,需仔细研究,认真观察分析.
=(-
=(-8+3)×100,
=-500;
(2)1
=1+(1-
=1+
=(1-3+3-5+5-…-2009+2009-2011)+(1-
=-2010+(1-
=-2009-
=-2009
(3)
=
=
=
=
=
分析:(1)根据有理数的混合运算,先算乘方,然后去掉绝对值号根据运算顺序,把括号里面的计算,最后再根据除以一个数等于乘以这个数的倒数进行计算即可得解;
(2)先把带分数分离成整数与分数的形式,同时把第偶数个改写成分子是1的分数,再把分数写出两个分数的差的形式,进行计算即可得解;
(3)把前2010个分数看作被减数,后面括号里面的数看作减数,根据被减数中每一个分数的分母中两个数的和都相等,减数中每一个分数的分母中的两个数的和也都相等,可以把每一个分数写成两个分数的和的形式,
点评:本题考查了有理数的混合运算,(2)把带分数写成整数与分数的和的形式,并把分数再写出两个分数的差的形式是解题的关键,(3)根据分数的分母上的两个数的和相等,拆分成两个分数的和的形式是解题的关键,本题难度较大,规律性较强,需仔细研究,认真观察分析.
练习册系列答案
相关题目