题目内容
下列代数式 a,﹣2ab,x+y,x2+y2,﹣1,ab2c3中,单项式共有( )
A.6个 B.5 个 C.4 个 D.3个
如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.
探究1:如果木板边长为1米,FC=米,则一块木板用墙纸的费用需 元;
探究2:如果木板边长为2米,正方形EFCG的边长为x米,一块木板需用墙纸的费用为y元,
(1)用含x的代数式表示y(写过程).
(2)如果一块木板需用墙纸的费用为225元,求正方形EFCG的边长为多少米?
若反比例函数y=的图象位于第二、四象限,则k的取值可以是( )
A.0 B.1 C.2 D.3
古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第13个三角形数与第12个三角形数的差为 .
观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第7个图中共有点的个数是( )
A.46 B.85 C.72 D.66
我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释(a+b)2=a2+2ab+b2,
(1)图(乙)是四张全等的矩形纸片拼成的图形,请利用图中阴影部分面积的不同表示方法,写出一个关于a,b代数恒等式表示 ;
(2)请构图解释:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(3)请通过构图因式分【解析】a2+3ab+2b2.
如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为
S3;则S3﹣S2= .
下列运算不正确的是( )
A.(a5)2=a10 B.2a2•(﹣3a3)=﹣6a5
C.b•b5=b6 D.b5•b5=b25
下列现象是数学中的平移的是( )
A.树叶从树上落下 B.电梯从底楼升到顶楼
C.碟片在光驱中运行 D.卫星绕地球运动