题目内容

如图,在10×10的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.
(1)填空:tanA=______,AC=______
【答案】分析:(1)延长AB,过C作延长线的垂线CG,在直角三角形ACG中,由CG及AG的长,利用锐角三角函数定义求出tanA的值,利用勾股定理求出AC的值即可;
(2)图中找出一点D,连接DE、DF,△ABC≌△EFD,如图所示,理由为:在直角三角形FDM中,由FM与MD的长,利用勾股定理求出FD的长,同理求出BC的长,可得出FD=BC,同理可得出ED=AC,EF=AB,利用SSS可得出△ABC≌△EFD.
解答:解:(1)延长AB,过C作CG⊥AB,交延长线于点G,
在Rt△ACG中,CG=2,AG=4,
根据勾股定理得:AC==2
tanA==

(2)图中找出一点D,连接DE、DF,△ABC≌△EFD,如右图所示,
证明:在Rt△EMD中,EM=4,MD=2,
根据勾股定理得:ED==2
在Rt△FDM中,FM=2,MD=2,
根据勾股定理得:FD==2
同理在Rt△BCG中,根据勾股定理得:BC=2
在△ABC和△EFD中,

∴△ABC≌△EFD(SSS).
故答案为:(1);2
点评:此题考查了勾股定理,锐角三角函数定义,以及全等三角形的判定,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网