题目内容
直线
与反比例函数
(
)的图象交于点A(1,2),求这两个函数的表达式.
解一元二次方程![]()
如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.
![]()
函数
是
关于
的反比例函数,则
_______.
如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
![]()
一个直角三角形斜边上的高与中线分别是5㎝和6㎝,则它的面积是______
.
- 题型:解答题
- 难度:中等
﹣3的相反数是( )
A. 3 B. ﹣3 C. -
D. ![]()
如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AEF,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,∠DAF=________.
![]()
反比例函数
中自变量x的取值范围是________。
如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
![]()
A. 35° B. 45° C. 50° D. 55°
查看答案若α是锐角,sinαcosα=p,则sinα+cosα的值是( )
A. 1+2p B.
C. 1-2p D. ![]()
函数y=
与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D. ![]()
- 题型:单选题
- 难度:简单
解方程
(1)
(2)![]()
计算
(1)先化简,再求值:(2x﹣1)(x+2)﹣2x(x+1),x=
.
(2)已知:a+b=4,ab=3,求
a3b+
a2b2+
ab3的值.
因式分【解析】
(1)(a+b)2+6(a+b)+9; (2)(x﹣y)2﹣9(x+y)2;
(3)a2(x﹣y)+b2(y﹣x). (4)(x2-5)2+8(5-x2)+16.
查看答案计算
(1)
(2)![]()
(3)a5·a7+a6·(-a3)2+2(-a3)4; (4)(x+2y﹣z)(x﹣2y+z)
查看答案已知关于x的分式方程
的解为负数,则k的取值范围是_________
若x、y满足
,则分式
的值为_________.
- 题型:解答题
- 难度:中等
若把分式
中的x和y都扩大3倍,那么分式的值( )
A. 扩大3倍 B. 不变 C. 缩小3倍 D. 缩小6倍
C 【解析】试题解析:将3x、3y代入原式,则原式=,所以缩小到原来的, 故选C.与分式
相等的是( )
A.
B.
C.
D. ![]()
任意给定一个非零数,按下列程序计算,最后输出的结果是( )
![]()
A. m B. m-2 C. m+1 D. m2+1
查看答案下列运算正确的是( )
A. m2(mn-3n+1)=m3n-3m2n B. (-3ab2)2=-9a2b4
C. (-a+b)(-a-b)=b2-a2 D. 3x2y÷xy=3x
查看答案计算(ab2)3的结果,正确的是( )
A. a3b6 B. a3b5 C. ab6 D. ab5
查看答案如图,矩形OABC的顶点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了
秒.
(1)当
时,求PC的长;
(2)当
为何值时,△NPC是以PC为腰的等腰三角形?
![]()
- 题型:单选题
- 难度:中等
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低
元,则每天的销售量是__________斤(用含
的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
(1)(100+200);(2)张阿姨需将每斤的售价降低1元. 【解析】试题分析:(1)按照题目中降价额与销售量的关系列式.(2)按照单件利润,列一元二次方程解应用题. 试题解析: (1)(100+200); (2)依题意可得: , 整理可得: 解这个方程得: , 当时,100+200=100+200×1 =300>260 , 当时,100+200=100...如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
![]()
如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
![]()
如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
![]()
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.
查看答案直线
与反比例函数
(
)的图象交于点A(1,2),求这两个函数的表达式.
- 题型:解答题
- 难度:中等
以下判定正确的是( )
A. 若AB⊥BC,则
ABCD是菱形 B. 若AC⊥BD,则
ABCD是正方形
C. 若AC=BD,则
ABCD是矩形 D. 若AB=AD,则
ABCD是正方形
如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为( )
![]()
A. 4米 B. 2米 C. 1.8米 D. 3.6米
查看答案关于
的一元二次方程
的常数项为0,则
的值等于( )
A. 1 B. 2 C. 0或1 D. 0
查看答案下列各组线段(单位:cm)中,成比例线段的是 ( )
A. 1、2、3、4 B. 1、2、2、4 C. 3、5、9、13 D. 1、2、2、3
查看答案准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为( )
A.
B.
C.
D. ![]()
点P(-2,
)是反比例函数
的图象上的一点,则
( )
A. 2 B. 1 C. -2 D. -1
查看答案 试题属性- 题型:单选题
- 难度:简单
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.
4 【解析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离. 【解析】 二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.直线y=x+3上有一点P(3,a),则点P关于原点的对称点
为___________.
如图,两个反比例函数
和
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )
![]()
A. 3 B. 4 C.
D. 5
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案某同学在用描点法画二次函数y=
+bx+c的图象时,列出了下面的表格:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
由于粗心,他算错了其中一个y值,则这个错误的数值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5
查看答案若圆锥的底面积为16πcm2,母线长为12cm,则它的侧面展开图的圆心角为( )
A. 240° B. 120° C. 180° D. 90°
查看答案 试题属性- 题型:填空题
- 难度:中等
商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
(1)每件衬衫应降价20元,每件衬衫盈利20元;(2)每件衬衫降价15元,商场平均每天盈利最多. 【解析】试题分析:(1)根据题意可以列出相应的方程,从而可以解答本题; (2)根据题意可以列出相应的函数关系式,将函数关系式化为顶点式即可解答本题. 试题解析:(1)设每件商品降价x元, 由题意得,(40-x)(20+2x)=1200 解得:x1=20,x2=10 ...如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连结BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连结ED,试证明ED与⊙O相切.
![]()
某校团委为积极参与“陶行知杯.全国书法大赛”现场决赛,向学校学生征集书画作品,今年3月份举行了“书画比赛”初赛,初赛成绩评定为A,B,C,D,E五个等级.该校七年级书法班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题.
![]()
(1)该校七年级书法班共有 名学生;扇形统计图中C等级所对应扇形的圆心角等于 度,并补全条形统计图;
(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生参加“陶行知杯.全国书法大赛”现场决赛,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.
查看答案如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△A′B′C′,并写出C′的坐标;
(2)求弧
的长.
![]()
解方程:(1)
(2)
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD= .
![]()
- 题型:解答题
- 难度:中等