题目内容

如图,已知点O为△ABC内角平分线的交点,过点O作MN∥BC,分别交AB于AC点M、N,若AB=12,
AC=14,则△AMN的周长是________.

26
分析:根据角平分线性质和平行线的性质推出∠MOB=∠MBO,推出BM=OM,同理CN=ON,代入三角形周长公式求出即可.
解答:∵BO平分∠ABC,
∴∠MBO=∠CBO,
∵MN∥BC,
∴∠MOB=∠CBO,
∴∠MOB=∠MBO,
∴OM=BM,
同理CN=NO,
∴BM+CN=MN,
∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.
故答案为:26.
点评:本题主要考查对等腰三角形的性质和判定,平行线的性质,角平分线性质等知识点的理解和掌握,能求出BM=OM、CN=ON是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网