题目内容
绝对值为5的有理数是( )
A. ±5 B. 10 C. -5 D. 5
如图,AB是街道,点O表示一家超市,点C、D是两个居民小区,设计人员不小心把∠1、∠2、∠3的度数弄丢了,身边没有量角器,只知道∠1﹣∠2=∠2﹣∠3,则∠2的度数是_____.
(题文)小宁和婷婷在一起做拼图游戏,他们用 “、△△、=”构思出了独特而有意义的图形并根据图形还用简洁的语言进行了表述:
观察以上图案
(1)这个图案有什么特点?
(2)它可以通过一个“基本图案”经过怎样的平移而形成?
(3)在平移的过程中,“基本图案”的大小、形状、位置是否发生了变化?你能解释其中的道理吗?
观察下面图案,在A,B,C,D四幅图案中,能通过图1平移得到的是( )
A. B.
C. D.
计算:
(1)-;
(2)|-49|×;
(3)|-3|-|-1|+|-3|.
已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.
(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t分钟时点P到点M、点N的距离相等,求t的值.
在数轴上,与原点的距离等于2的点表示的数为_____.
(题文)出租车司机小傅某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:
+11, -2, +3, +9, -11, +5, -15, -8
(1)当把最后一名乘客送到目的地时,小傅距离出车地点的距离为多少?
(2)若每千米的营运额为5元,成本为2.7元/km,则这天下午他盈利多少元?
已知代数式x2-4xy+4y2-(x2-y2)-2y2.
(1)当x=1,y=3时,求代数式的值;
(2)当4x=3y,求代数式的值.