题目内容
分析:根据全等三角形的判定定理AAS推知△ACD≌△CBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD.
解答:解:DE+BE=AD.理由如下:
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
又∵AD⊥MN于点D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE.
在△ACD和△CBE中,
,
∴△ACD≌△CBE,
∴CD=BE,AD=CE,
∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°.
又∵AD⊥MN于点D,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE.
在△ACD和△CBE中,
|
∴△ACD≌△CBE,
∴CD=BE,AD=CE,
∴DE+BE=DE+CD=EC=AD,即DE+BE=AD.
点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
练习册系列答案
相关题目